(本小题满分12分)已知函数,(1)为何值时,有两个零点且均比-1大;(2)求在上的最大值.
已知离心率为的椭圆的顶点恰好是双曲线的左右焦点,点是椭圆上不同于的任意一点,设直线的斜率分别为. (1)求椭圆的标准方程; (2)当,在焦点在轴上的椭圆上求一点Q,使该点到直线(的距离最大。 (3)试判断乘积“(”的值是否与点(的位置有关,并证明你的结论;
双曲线的中心在原点,右焦点为,渐近线方程为 . (1)求双曲线的方程; (2)设直线:与双曲线交于、两点,问:当为何值时,以为直径的圆过原点;
已知p: ,q: ,若是的必要不充分条件,求实数m的取值范围。
已知点A(1,0)及圆,C为圆B上任意一点,求AC垂直平分线与线段BC的交点P的轨迹方程。
已知函数. (1)求证:函数在区间上存在唯一的极值点; (2)当时,若关于的不等式恒成立,试求实数的取值范围.