(本题7分)如图,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非正方形).(1)画出拼成的矩形的简图(请在简图上标明x与y);(2)求的值.
如图,在平面直角坐标系 xOy中,菱形 ABCD的对角线 AC与 BD交于点 P(﹣1,2), AB⊥ x轴于点 E,正比例函数 y= mx的图象与反比例函数 y= n - 3 x 的图象相交于 A, P两点.
(1)求 m, n的值与点 A的坐标;
(2)求证:△ CPD∽△ AEO;
(3)求sin∠ CDB的值.
随着粤港澳大湾区建设的加速推进,广东省正加速布局以5 G等为代表的战略性新兴产业,据统计,目前广东5 G基站的数量约1.5万座,计划到2020年底,全省5 G基站数是目前的4倍,到2022年底,全省5 G基站数量将达到17.34万座.
(1)计划到2020年底,全省5 G基站的数量是多少万座?
(2)按照计划,求2020年底到2022年底,全省5 G基站数量的年平均增长率.
某中学抽取了40名学生参加"平均每周课外阅读时间"的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.
频数分布表
组别
时间/小时
频数/人数
A组
0≤ t<1
2
B组
1≤ t<2
m
C组
2≤ t<3
10
D组
3≤ t<4
12
E组
4≤ t<5
7
F组
t≥5
4
请根据图表中的信息解答下列问题:
(1)求频数分布表中 m的值;
(2)求 B组, C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;
(3)已知 F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从 F组中随机选取2名学生,恰好都是女生.
已知 P= 2 a a 2 - b 2 ﹣ 1 a + b ( a≠± b)
(1)化简 P;
(2)若点( a, b)在一次函数 y= x﹣ 2 的图象上,求 P的值.
如图, D是 AB上一点, DF交 AC于点 E, DE= FE, FC∥ AB,求证:△ ADE≌△ CFE.