(本小题满分9分) 如图,在△ABC中,∠C=45°,BC=10,高AD=8,矩形EFPQ的一边QP在边上,E、F两点分别在AB、AC上,AD交EF于点H.(1)求证:;(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值;(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,当0≤t<49时,求S与t的函数关系式.
已知:二次函数的图象开口向上,并且经过原点. (1)求的值; (2)用配方法求出这个二次函数图象的顶点坐标.
(1)计算:20140+−sin45°+tan60°; (2)解方程:.
如图,在平面直角坐标系O中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P、Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度,匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t秒,当t=2秒时PQ=. (1)求点D的坐标,并直接写出t的取值范围; (2)连接AQ并延长交轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值. (3)在(2)的条件下,t为何值时,APQF是梯形?
如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=1,ED=2. (1)求证:∠ABC=∠ADB; (2)求AB的长; (3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.
随着襄阳市近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图1所示;种植花卉的利润与投资量成二次函数关系,如图2所示(注:利润与投资量的单位:万元) (1)分别求出利润与关于投资量的函数关系式; (2)如果这位专业户以10万元资金投入种植花卉和树木,求他获得的最大利润是多少? (3)在(2)的条件下,根据对市场需求的调查,这位专业户决定投入种植树木的资金不得高于投入种植花卉的资金,他至少获得多少利润?