四边形ABCD为矩形,G是BC上的任意一点,DE⊥AG于点E.(1)如图1,若AB=BC,BF∥DE,且交AG于点F,求证:AF-BF=EF;(2)如图2,在(1)条件下,AG=BG,求;(3)如图3,连EC,若CG=CD,DE=2,GE=1,则CE= 。(直接写出结果)
如图,在△ABC中,点D是AB的中点,点E在边AC上,且∠AED=∠ABC,如果AE=3,EC=1,求边AB的长.
如图所示,在△ABC中,AB=4,探究以下问题:(1)如图①所示,DE∥BC,DE把△ABC分成面积相等的两部分,即S1=S2,求AD的长;(2)如图②所示,DE∥FG∥BC,DE,FG把△ABC分成面积相等的三部分,即S1=S2=S3,求AD的长;(3)如图③所示,DE∥FG∥HK∥…∥BC,DE,FG,HK,…把△ABC分成面积相等的n部分,即S1=S2=S3=…=Sn,请直接写出AD的长.
如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位,当点P运动到C时,两点都停止,设运动时间为t秒.(1)求线段CD的长.(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ︰S△ABC=9︰100?若存在,求出t的值;若不存在,说明理由.(3)当t为何值时,△CPQ为等腰三角形?
如图所示,在△ABC中,DE∥BC,S△ADE︰S△ABC=4︰9,求:(1)AE︰EC;(2)S△ADE︰S△CDE.
一块直角三角形形状的铁皮材料,两直角边分别为AC=30cm,BC=40cm,现要把它加工成一个面积最大的正方形盒底,请甲、乙两位同学设计加工方案,甲的设计方案如图①,乙的设计方案如图②,你认为哪位同学的设计方案较好?试说明理由.(加工损耗忽略不计)