(本题10分)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=时,求线段AB的长.
我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…… ① (其中、、为三角形的三边长,为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:…… ②(其中). (1)若已知三角形的三边长分别为5、7、8,试分别运用公式①和公式②,计算该三角形的面积(结果保留根号); (2)你能否由公式①推导出公式②?请试试.
已知关于的一元二次方程有两个实数根和. (1)求实数m的取值范围; (2)当时,求m的值.
峨眉河是峨眉的一个风景点.如图,河的两岸PQ平行于MN,河岸PQ上有一排间隔为50米的彩灯柱C、D、E、…,小华在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度(参考数据:).
如图,平行于y轴的直尺(一部分)与反比例函数()的图象交于点A、C,与x轴交于点B、D,连结AC.点A、B的刻度分别为5、2(单位:cm),直尺的宽度为2cm,OB=2cm. (1)求这个反比例函数的解析式; (2)求梯形的面积.
先化简,再求值:,其中.