如图,一个底面半径为R的圆柱被与其底面所成角为θ(0°<θ<90°)的平面所截,截面是一个椭圆,当θ为30°时,这个椭圆的离心率为 .
若不等式|a﹣1|≥x+2y+2z,对满足x2+y2+z2=1的一切实数x、y、z恒成立,则实数a的取值范围是 .
已知a+b+c=1,m=a2+b2+c2,则m的最小值为 .
设x,y,z∈R,2x+2y+z+8=0,则(x﹣1)2+(y+2)2+(z﹣3)2之最小值为 .
若,则x2+y2+z2的最小值为 .
设f(x)是定义在(0,+∞)上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a,f(a)),(b,﹣f(b))的直线与x轴的交点为(c,0),则称c为关于函数f(x)的平均数,记为Mf(a,b),例如,当f(x)=1(x>0)时,可得Mf(a,b)=c=,即Mf(a,b)为a,b的算术平均数.(1)当f(x)= (x>0)时,Mf(a,b)为a,b的几何平均数;(2)当f(x)= (x>0)时,Mf(a,b)为a,b的调和平均数;(以上两空各只需写出一个符合要求的函数即可)