(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分)一家公司计划生产某种小型产品的月固定成本为万元,每生产万件需要再投入万元.设该公司一个月内生产该小型产品万件并全部销售完,每万件的销售收入为万元,且每万件国家给予补助万元. (为自然对数的底数,是一个常数.)(Ⅰ)写出月利润(万元)关于月产量(万件)的函数解析式;(Ⅱ)当月生产量在万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生产量值(万件). (注:月利润=月销售收入+月国家补助-月总成本).
如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.(1)求证:DC平面ABC;(2)求BF与平面ABC所成角的正弦;(3)求二面角B-EF-A的余弦.
已知椭圆:的长轴长是短轴长的倍,,是它的左,右焦点.(1)若,且,,求、的坐标;(2)在(1)的条件下,过动点作以为圆心、以1为半径的圆的切线(是切点),且使,求动点的轨迹方程.
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2.表1:男生身高频数分布表表2:女生身高频数分布表(1)求该校男生的人数并完成下面频率分布直方图;(2)估计该校学生身高(单位:cm)在的概率;(3)在男生样本中,从身高(单位:cm)在的男生中任选3人,设表示所选3人中身高(单位:cm)在的人数,求的分布列和数学期望.
已知函数, .(1)求函数的最大值和最小值;(2)设函数在上的图象与轴的交点从左到右分别为M、N,图象的最高点为P, 求与的夹角的余弦.
(本小题14分)在数列中,=0,且对任意k,成等差数列,其公差为2k. (Ⅰ)证明成等比数列;(Ⅱ)求数列的通项公式; (Ⅲ)记. 证明: 当为偶数时, 有.