(本题共13分,第(Ⅰ)问6分,第(Ⅱ)问7分)已知函数 .(Ⅰ)若函数在处取得极值,求曲线在点处的切线方程;(Ⅱ)当时,讨论的单调区间.
已知椭圆的离心率为,其长轴长与短轴长的和等于6. (1)求椭圆E的方程; (2)如图,设椭圆E的上.下顶点分别为,,P是椭圆上异于,的任意一点,直线.分别交x轴于点N.M,若直线OT与过点M.N的圆G相切,切点为T.证明:线段OT的长为定值.
已知数列是递增的等比数列,满足,且是.的等差中项,数列满足,其前n项和为,且. (1)求数列,的通项公式; (2)数列的前n项和为,若不等式对一切恒成立,求实数的取值范围.
已知点A,B的坐标分别是,,直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的差是-1. (1)过点M的轨迹C的方程; (2)过原点作两条互相垂直的直线.分别交曲线C于点A,C和B,D,求四边形ABCD面积的最小值.
在如图所示的几何体中,AE⊥平面ABC,CD∥AE,F是BE的中点,AC=BC=1,∠ACB=90°,AE=2CD=2. (1)证明DF⊥平面ABE; (2)求二面角A-BD-E的余弦值.
在△ABC中,角A,B,C的对边分别为a,b,c,且A,B,C成等差数列. (1)若b=,a=3,求c的值; (2)设t=sinAsinC,求t的最大值.