(本题共13分,第(Ⅰ)问6分,第(Ⅱ)问7分)已知函数 .(Ⅰ)若函数在处取得极值,求曲线在点处的切线方程;(Ⅱ)当时,讨论的单调区间.
如图,正四棱柱中,,点在上且 (1)证明:平面; (2)求二面角的余弦值.
已知定义在(0,+)上的函数是增函数 (1)求常数的取值范围 (2)过点(1,0)的直线与()的图象有交点,求该直线的斜率的取值范围
车站每天8∶00~9∶00,9∶00~10∶00都恰有一辆客车到站,8∶00~9∶00到站的客车A可能在8∶10,8∶30,8∶50到站,其概率依次为;9∶00~10∶00到站的客车B可能在9∶10,9∶30,9∶50到站,其概率依次为. (1)旅客甲8∶00到站,设他的候车时间为,求的分布列和; (2)旅客乙8∶20到站,设他的候车时间为,求的分布列和.
已知向量,,函数. (1)求函数的单调递增区间 (2)在中,分别是角、、的对边,且,求面积的最大值
(本小题满分14分) 已知函数在(0,1)内是增函数. (1)求实数的取值范围; (2)若,求证:.