(本小题满分6分)分别根据配方法和顶点坐标公式确定下列二次函数的顶点坐标。 (配方法)② (公式法)
(贵港)如图,抛物线与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为. (1)求抛物线的解析式并写出其顶点坐标; (2)若动点P在第二象限内的抛物线上,动点N在对称轴l上. ①当PA⊥NA,且PA=NA时,求此时点P的坐标; ②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.
(贵港)如图,一次函数的图象与反比例函数的图象交于点A和点B(﹣2,n),与x轴交于点C(﹣1,0),连接OA. (1)求一次函数和反比例函数的解析式; (2)若点P在坐标轴上,且满足PA=OA,求点P的坐标.
(贵港)如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4). (1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1; ②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2. (2)请写出直线B1C1与直线B2C2的交点坐标.
(崇左)如图,在平面直角坐标系中,点M的坐标是(5,4),⊙M与y轴相切于点C,与x轴相交于A、B两点. (1)则点A、B、C的坐标分别是A(__,__),B(__,__),C(__,__); (2)设经过A、B两点的抛物线解析式为,它的顶点为F,求证:直线FA与⊙M相切; (3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使△PBC是等腰三角形.如果存在,请求出点P的坐标;如果不存在,请说明理由.
(北海)如图1所示,已知抛物线的顶点为D,与x轴交于A、B两点,与y轴交于C点,E为对称轴上的一点,连接CE,将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上. (1)直接写出D点和E点的坐标; (2)点F为直线C′E与已知抛物线的一个交点,点H是抛物线上C与F之间的一个动点,若过点H作直线HG与y轴平行,且与直线C′E交于点G,设点H的横坐标为m(0<m<4),那么当m为何值时,=5:6? (3)图2所示的抛物线是由向右平移1个单位后得到的,点T(5,y)在抛物线上,点P是抛物线上O与T之间的任意一点,在线段OT上是否存在一点Q,使△PQT是等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.