(本小题满分13分)已知向量且(1)若,求的值;(2)且,求实数n的取值范围.
已知椭圆:的右焦点为,短轴的一个端点到的距离等于焦距.(1)求椭圆的方程;(2)过点的直线与椭圆交于不同的两点,,是否存在直线,使得△与△的面积比值为?若存在,求出直线的方程;若不存在,说明理由.
已知函数,其导函数的图象经过点,,如图所示.(1)求的极大值点;(2)求的值;(3)若,求在区间上的最小值.
如图,三棱柱中,平面,,,.以,为邻边作平行四边形,连接和.(1)求证:∥平面 ;(2)求直线与平面所成角的正弦值;(3)线段上是否存在点,使平面与平面垂直?若存在,求出的长;若不存在,说明理由.
为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘用车补贴标准如下表:
某校研究性学习小组,从汽车市场上随机选取了辆纯电动乘用车,根据其续驶里程(单次充电后能行驶的最大里程)作出了频率与频数的统计表:
(1)求,,,的值;(2)若从这辆纯电动乘用车中任选辆,求选到的辆车续驶里程都不低于公里的概率;(3)若以频率作为概率,设为购买一辆纯电动乘用车获得的补贴,求的分布列和数学期望.
已知非空有限实数集S的所有非空子集依次记为S1,S2,S3, ,集合Sk中所有元素的平均值记为bk.将所有bk组成数组T:b1,b2,b3, ,数组T中所有数的平均值记为m(T).(1)若S={1,2},求m(T);(2)若S={a1,a2, ,an}(n∈N*,n≥2),求m(T).