给定下列两个关于异面直线的命题:那么( )命题(1):若平面上的直线与平面上的直线为异面直线,直线是与的交线,那么至多与中的一条相交; 命题(2):不存在这样的无穷多条直线,它们中的任意两条都是异面直线.
两个圆C1:x2+y2+2x+2y-2=0,C2:x2+y2-4x-2y+1=0的公切线的条数为( )
有四个游戏盘,将它们水平放稳后,在上面扔一颗小玻璃球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )
一名同学先后投掷一枚骰子两次,第一次向上的点数记为,第二次向上的点数记为,在直角坐标系中,以为坐标的点落在直线上的概率为 ( )
以点(2,—1)为圆心且与直线0相切的圆的方程为 ( )
如果实数x,y满足目标函数z=kx+y的最大值为12,最小值为3,那么实数k的值为( )