统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:,已知甲、乙两地相距100千米(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
(本小题满分14分) 已知数列的前项和满足,等差数列满足,。 (1)求数列、的通项公式; (2)设,数列的前项和为,问>的最小正整数是多少?
(本小题满分14分) 如图的几何体中,平面,平面,△为等边三角形,为的中点. (1)求证:平面; (2)求证:平面平面。
(本小题满分12分) 甲、乙二名射击运动员参加今年深圳举行的第二十六届世界大学生夏季运动会的预选赛,他们分别射击了4次,成绩如下表(单位:环):
(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率; (2)现要从中选派一人参加决赛,你认为选派哪位运动员参加比较合适?请说明理由.
(本小题满分12分) 设三角形的内角的对边分别为,. (1)求边的长; (2)求角的大小。
设等比数列{}的前项和,首项,公比. (Ⅰ)证明:; (Ⅱ)若数列{}满足,,求数列{}的通项公式; (Ⅲ)若,记,数列{}的前项和为,求证:当时,.