已知直线经过直线的交点,且点到直线的距离为3,求直线的方程.
(本小题共13分)在平面直角坐标系xOy中,为坐标原点,以为圆心的圆与直线相切.(Ⅰ)求圆的方程;(Ⅱ)直线:与圆交于,两点,在圆上是否存在一点,使得四边形为菱形,若存在,求出此时直线的斜率;若不存在,说明理由.
(本小题共13分)为了解某地区中学生的身体发育状况,拟采用分层抽样的方法从甲、乙、丙三所中学抽取6个教学班进行调查.已知甲、乙、丙三所中学分别有12,6,18个教学班.(Ⅰ)求从甲、乙、丙三所中学中分别抽取的教学班的个数;(Ⅱ)若从抽取的6个教学班中随机抽取2个进行调查结果的对比,求这2个教学班中至少有1个来自甲学校的概率.
(本小题共14分)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC,M,N分别是CC1,AB的中点.(Ⅰ)求证:CN⊥AB1;(Ⅱ)求证:CN //平面AB1M.
(本小题共13分)已知函数.(Ⅰ)求函数的最小正周期和值域;(Ⅱ)若为第二象限角,且,求的值.
(本小题共13分)若有穷数列{an}满足:(1)首项a1=1,末项am=k,(2)an+1= an+1或an+1="2an" ,(n=1,2,…,m-1),则称数列{an}为k的m阶数列.(Ⅰ)请写出一个10的6阶数列;(Ⅱ)设数列{bn}是各项为自然数的递增数列,若,且,求m的最小值.(考生务必将答案答在答题卡上,在试卷上作答无效)