已知向量,设函数(1)求在区间上的零点;(2)在中,角的对边分别是,且满足,求的取值范围.
(本小题满分10分)已知抛物线与直线交于两点.(Ⅰ)求弦的长度;(Ⅱ)若点在抛物线上,且的面积为,求点P的坐标.
(本小题满分12分)在如图的多面体中,⊥平面,,,,,,,是的中点.(Ⅰ) 求证:平面;(Ⅱ) 求二面角的余弦值.
如图,设、分别是圆和椭圆的弦,且弦的端点在轴的异侧,端点与、与的横坐标分别相等,纵坐标分别同号.(Ⅰ)若弦所在直线斜率为,且弦的中点的横坐标为,求直线的方程;(Ⅱ)若弦过定点,试探究弦是否也必过某个定点. 若有,请证明;若没有,请说明理由.
如图,有一边长为2米的正方形钢板缺损一角(图中的阴影部分),边缘线是以直线为对称轴,以线段的中点为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.(Ⅰ)请建立适当的直角坐标系,求阴影部分的边缘线的方程;(Ⅱ)如何画出切割路径,使得剩余部分即直角梯形的面积最大?并求其最大值.
(本小题满分12分)已知直线经过抛物线的焦点,且与抛物线交于两点,点为坐标原点.(Ⅰ)证明:为钝角.(Ⅱ)若的面积为,求直线的方程;