已知二次函数y=x2-mx+m-2:(1)求证:不论m为任何实数,此二次函数的图象与x轴都有两个交点;(2)当二次函数的图象经过点(3,6)时,确定m的值,并写出此二次函数与坐标轴的交点坐标。.
[50 —( —+)×(—6)2]÷(―72)
(-48)÷(-2)3-(―25×(-4)+(-2)2
3-(+63)-(-259)-(-41)+(-40)
阅读下面例题的解答过程,体会并其方法,并借鉴例题的解法解方程。 例:解方程x2--1=0. 解:(1)当x-1≥0即x≥1时,= x-1。 原化为方程x2-(x-1)-1=0,即x2-x=0 解得x1 =0.x2=1 ∵x≥1,故x =0舍去, ∴x=1是原方程的解。 (2)当x-1<0即x<1时,=-(x-1)。 原化为方程x2+(x-1)-1=0,即x2+x-2=0 解得x1 =1.x2=-2 ∵x<1,故x =1舍去, ∴x=-2是原方程的解。 综上所述,原方程的解为x1 =1.x2=-2 解方程x2--4=0.