提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度 (单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度是车流密度的一次函数.(1)当时,求函数的表达式.(2)当车流密度为多大时,车流量(单位时间内通过桥上某观查点的车辆数,单位:辆/每小时)可以达到最大,并求最大值(精确到1辆/每小时).
已知数列中,,() (I)求数列的通项公式和它的前项和; (II)设,求数列的前项和.
如图,已知平面ABC,AB=AC=3,,,点E,F分别是BC,的中点. (I)求证:EF平面; (II)求证:平面平面. (III)求直线与平面所成角的大小.
设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛. (I)求应从这三个协会中分别抽取的运动员人数; (II)将抽取的6名运动员进行编号,编号分别为,从这6名运动员中随机抽取2名参加双打比赛. (i)用所给编号列出所有可能的结果; (ii)设A为事件“编号为的两名运动员至少有一人被抽到”,求事件A发生的概率.
已知函数 (Ⅰ)求最小正周期; (Ⅱ)求在区间上的最大值和最小值.
已知椭圆()上的点P到左、右两焦点的距离之和为,离心率为. (1)求椭圆的方程; 过右焦点的直线交椭圆于A、B两点. 若y轴上一点满足,求直线斜率k的值; (2)是否存在这样的直线,使的最大值为(其中O为坐标原点)?若存在,求直线方程;若不存在,说明理由.