已知函数f(x)=x3+ax2﹣a(a∈R),若存在x0,使f(x)在x=x0处取得极值,且f(x0)=0,则a的值为 .
若数列{n(n+4) n}中的最大项是第k项,则k= .
传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:(1)b2012是数列{an}中的第 项;(2)b2k-1= .(用k表示)
函数y=的值域为 .
函数f(x)=sin2x+2cos2x-,函数g(x)=mcos(2x-)-2m+3(m>0),若存在x1,x2∈[0,],使得f(x1)=g(x2)成立,则实数m的取值范围是 .
定义运算a※b为a※b=如1※2=1,则函数f(x)=sinx※cosx的值域为 .