计算:.
某体育场看台的坡面 AB 与地面的夹角是 37 ° ,看台最高点 B 到地面的垂直距离 BC 为3.6米,看台正前方有一垂直于地面的旗杆 DE ,在 B 点用测角仪测得旗杆的最高点 E 的仰角为 33 ° ,已知测角仪 BF 的高度为1.6米,看台最低点 A 与旗杆底端 D 之间的距离为16米( C , A , D 在同一条直线上).
(1)求看台最低点 A 到最高点 B 的坡面距离;
(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩 G 、 H 之间的距离为1.2米,下端挂钩 H 与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数) ( sin 37 ° ≈ 0 . 6 , cos 37 ° ≈ 0 . 8 , tan 37 ° ≈ 0 . 75 , sin 33 ° ≈ 0 . 54 , cos 33 ° ≈ 0 . 84 , tan 33 ° ≈ 0 . 65 )
企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:
(1)宣传小组抽取的捐款人数为 人,请补全条形统计图;
(2)统计的捐款金额的中位数是 元;
(3)在扇形统计图中,求100元所对应扇形的圆心角的度数;
(4)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?
先化简,再求值: ( a - 1 a ) ÷ a - 1 ( a + 1 ) 2 - 1 ,其中 a 满足 a 2 + 3 a - 1 = 0 .
如图,已知抛物线 m : y = a x 2 - 6 ax + c ( a > 0 ) 的顶点 A 在 x 轴上,并过点 B ( 0 , 1 ) ,直线 n : y = - 1 2 x + 7 2 与 x 轴交于点 D ,与抛物线 m 的对称轴 l 交于点 F ,过 B 点的直线 BE 与直线 n 相交于点 E ( - 7 , 7 ) .
(1)求抛物线 m 的解析式;
(2) P 是 l 上的一个动点,若以 B , E , P 为顶点的三角形的周长最小,求点 P 的坐标;
(3)抛物线 m 上是否存在一动点 Q ,使以线段 FQ 为直径的圆恰好经过点 D ?若存在,求点 Q 的坐标;若不存在,请说明理由.
已知点 P ( x 0 , y 0 ) 和直线 y = kx + b ,则点 P 到直线 y = kx + b 的距离证明可用公式 d = | k x 0 - y 0 + b | 1 + k 2 计算.
例如:求点 P ( - 1 , 2 ) 到直线 y = 3 x + 7 的距离.
解:因为直线 y = 3 x + 7 ,其中 k = 3 , b = 7 .
所以点 P ( - 1 , 2 ) 到直线 y = 3 x + 7 的距离为: d = | k x 0 - y 0 + b | 1 + k 2 = | 3 × ( - 1 ) - 2 + 7 | 1 + 3 2 = 2 10 = 10 5 .
根据以上材料,解答下列问题:
(1)求点 P ( 1 , - 1 ) 到直线 y = x - 1 的距离;
(2)已知 ⊙ Q 的圆心 Q 坐标为 ( 0 , 5 ) ,半径 r 为2,判断 ⊙ Q 与直线 y = 3 x + 9 的位置关系并说明理由;
(3)已知直线 y = - 2 x + 4 与 y = - 2 x - 6 平行,求这两条直线之间的距离.