计算:.
如图,抛物线 y = a x 2 + bx + c 的图象经过点 A ( - 2 , 0 ) ,点 B ( 4 , 0 ) ,点 D ( 2 , 4 ) ,与 y 轴交于点 C ,作直线 BC ,连接 AC , CD .
(1)求抛物线的函数表达式;
(2) E 是抛物线上的点,求满足 ∠ ECD = ∠ ACO 的点 E 的坐标;
(3)点 M 在 y 轴上且位于点 C 上方,点 N 在直线 BC 上,点 P 为第一象限内抛物线上一点,若以点 C , M , N , P 为顶点的四边形是菱形,求菱形的边长.
如图,反比例函数 y = m x 的图象与一次函数 y = kx + b 的图象交于 A , B 两点,点 A 的坐标为 ( 2 , 6 ) ,点 B 的坐标为 ( n , 1 ) .
(1)求反比例函数与一次函数的表达式;
(2)点 E 为 y 轴上一个动点,若 S ΔAEB = 5 ,求点 E 的坐标.
一个盒子里有标号分别为1,2,3,4,5,6的六个小球,这些小球除标号数字外都相同.
(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率;
(2)甲、乙两人用这六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.
某校进行期末体育达标测试,甲、乙两班的学生数相同,甲班有48人达标,乙班有45人达标,甲班的达标率比乙班高 6 % ,求乙班的达标率.
解不等式组,并把解集表示在数轴上.
2 x + 5 ⩽ 3 x + 2 , ① 1 - 2 x 3 + 1 5 > 0 , ② .