已知函数f(x)=ax3+|x-a|,aR.(1)若a=-1,求函数y=f(x) (x [0,+∞))的图象在x=1处的切线方程;(2)若g(x)=x4,试讨论方程f(x)=g(x)的实数解的个数;(3)当a>0时,若对于任意的x1 [a,a+2],都存在x2 [a+2,+∞),使得f(x1)f(x2)=1024,求满足条件的正整数a的取值的集合.
已知函数为常数,)是上的奇函数. (Ⅰ)求的值;(Ⅱ)讨论关于的方程的根的个数.
如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2 DE=2,M为AD中点. (Ⅰ) 证明; (Ⅱ) 若二面角A-BF-D的平面角的余弦值为,求AB的长.
某某种饮料每箱6听,如果其中有两听不合格产品. (1)质检人员从中随机抽出1听,检测出不合格的概率多大?; (2)质检人员从中随机抽出2听,设为检测出不合格产品的听数,求的分布列及数学期望.
已知向量,函数. (1) 求函数的最大值,并写出相应的取值集合; (2) 若,且,求的值.
已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切. (Ⅰ)求圆的方程; (Ⅱ)设直线与圆相交于两点,求实数的取值范围; (Ⅲ) 在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由.