(本小题满分13分)从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同。(1)若抽取后又放回,抽3次,①分别求恰2次为红球的概率及抽全三种颜色球的概率;②求抽到红球次数的数学期望.(2)若抽取后不放回,抽完红球所需次数为的分布列及期望.
(本小题满分12分) 已知函数 (1)求函数的单调递减区间; (2)设,的最小值是,最大值是,求实数的值.
(本小题满分12分) 已知实数,命题:在区间上为减函数;命题:方程在有解。若为真,为假,求实数的取值范围。
(本小题满分12分) 在△ABC中,设角A、B、C的对边分别为a、b、c,且. (1)求的值; (2)若,且,求△ABC的面积.
(本小题满分14分) 已知函数在上有定义,对任意实数和任意实数,都有. (Ⅰ)证明; (Ⅱ)证明(其中k和h均为常数); (Ⅲ)当(Ⅱ)中的时,设,讨论在内的单调性.
(本小题满分12分) 如图,在中,设,,的中点为,的中点为,的中点恰为. (Ⅰ)若,求和的值; (Ⅱ)以,为邻边, 为对角线,作平行四边形, 求平行四边形和三角形的面积之比.