甲乙两人进行掰手腕比赛,比赛规则规定三分钟为一局,三分钟内不分胜负为平局,当有一人赢3局就结束比赛,否则继续进行,根据以往经验,每次甲胜的概率为,乙胜的概率为,且每局比赛胜负互不受影响.(Ⅰ)求比赛4局乙胜的概率;(Ⅱ)求在2局比赛中甲的胜局数为ξ的分布列和数学期望;(Ⅲ)若规定赢一局得2分,平一局得1分,输一局得0分,比赛进行五局,积分有超过5分者比赛结束,否则继续进行,求甲得7分的概率.
已知函数,R的最大值是1,其图像经过点.(Ⅰ)求;(Ⅱ)求的单调递增区间;(Ⅲ)函数的图象经过怎样的平移可使其对应的函数成为奇函数
设向量a =, b =(其中实数不同时为零),当时,有a⊥b;当时,有a∥b.(Ⅰ)求函数解析式;(Ⅱ)设,且,求.
(Ⅰ)已知:,求的值.(Ⅱ)已知,为锐角,求 的值.
在中,点E是AB的中点,点F在BD上,且BF=BD,求证:E、F、C三点共线.
(本小题满分10分)已知椭圆,以原点为圆心,椭圆的短半轴为半径的圆与直线相切。(1)求椭圆C的方程;(2)设轴对称的任意两个不同的点,连结PB交椭圆C于另一点E,证明:直线AE与x轴相交于定点Q;(3)在(2)的条件下,过点Q的直线与椭圆C交于M、N两点,求的取值范围。