已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C.(1)求此抛物线的解析式;(2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.
解方程组:.
如图,点C在∠MAN的边AM上,CD⊥AN,垂足为点D,点B在边AN上运动,∠BCA的平分线交AN于点E。 (1)若∠A=30°,∠B=70°,求∠ECD的度数; (2)若∠A=,∠B=,求∠ECD的度数(用含的式子表示).
某校准备组织七年级400名学生参加北京夏令营,已知用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人; (1)每辆小客车和每辆大客车各能坐多少名学生? (2)若学校计划租用小客车x辆,大客车y辆,一次送完,且恰好每辆车都坐满; ①请你设计出所有的租车方案; ②若小客车每辆需租金4000元,大客车每辆需租金7600元,请选出最省钱的租车方案,并求出最少租金.
已知x+y=3,且(x+2)(y+2)=12. (1)求xy的值;(2)求x2+3xy+y2的值.
如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点. (1)画出△ABC向右平移4个单位后得到的△A1B1C1; (2)画出△ABC的AB边上的中线CD,并求△BCD的面积.