有一块半径为R,圆心角为60°(∠AOB=60°)的扇形木板,现欲按如图所示锯出一矩形(矩形EFGN)桌面,则此桌面的最大面积为_________ .
已知点 M - 1 , 1 和抛物线 C : y 2 = 4 x ,过 C 的焦点且斜率为 k 的直线与 C 交于 A , B 两点.若 ∠ AMB = 90 ° ,则 k = ________.
函数 f x = cos 3 x + π 6 在 0 , π 的零点个数为________.
曲线 y = ax + 1 e x 在点 0 , 1 处的切线的斜率为 - 2 ,则 a = ________.
已知向量 a ⃑ = 1 , 2 , b ⃑ = 2 , - 2 , c ⃑ = 1 , λ .若 c ⃑ ∥ 2 a ⃑ + b ⃑ ,则 λ = ________.
已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足 AP ⃑ =2 PB ⃑ ,则当m=___________时,点B横坐标的绝对值最大.