已知函数(,),.(1)求函数的单调区间,并确定其零点个数;(2)若在其定义域内单调递增,求的取值范围;(3)证明不等式 ().
(本题10分)已知函数有极值. (1)求的取值范围; (2)若在处取得极值,且当时,恒成立,求的取值范围.
(本题10分)已知椭圆与双曲线共焦点,且过() (1)求椭圆的标准方程; (2)求斜率为2的一组平行弦的中点轨迹方程。
(本题8分)在边长为60 cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?
(本题8分)已知p:,q:,若是的必要不充分条件,求实数m的取值范围。
(本题6分)已知函数。 (1)求在处的切线方程; (2)求该切线与坐标轴所围成的三角形面积。