已知函数(,),.(1)求函数的单调区间,并确定其零点个数;(2)若在其定义域内单调递增,求的取值范围;(3)证明不等式 ().
某“帆板”集训队在一海滨区域进行集训,该海滨区域的海浪高度(米)随着时间而周期性变化,每天各时刻的浪高数据的平均值如下表:
试画出散点图;观察散点图,从中选择一个合适的函数模型,并求出该拟合模型的解析式;如果确定在白天7时~19时当浪高不低于0.8米时才进行训练,试安排恰当的训练时间.
是否存在实数,使得函数在闭区间上的最大值是?若存在,求出对应的值?若不存在,试说明理由.
如图,函数,x∈R,(其中)的图象与y轴交于点(0,1). 求的值;设P是图象上的最高点,M、N是图象与x轴的交点,求与夹角的余弦值.
已知向量,向量,函数若且当时,求函数的单调递减区间;当时,写出由函数的图象变换到函数的图象的变换过程.
已知函数.若关于的方程在上有解,求实数的取值范围.