高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数.(2)请根据频率分布直方图,估计样本数据的众数和中位数(精确到0.01).(3)设表示该班两个学生的百米测试成绩,已知,求事件的概率.
如图所示,在三棱锥P—ABC中,PA⊥底面ABC,(1)证明:平面PBE⊥平面PAC;(2)如何在BC上找一点F,使AD∥平面PEF?并说明理由.
如图所示,ABCD是矩形,PA⊥平面ABCD,△PAD是等腰三角形,M、N分别是AB、PC的中点.求证:MN⊥平面PCD.
如图所示,四棱锥P—ABCD的底面是矩形,PA⊥平面ABCD,E、F分别是AB、PD的中点,又二面角P—CD—B为45°.(1)求证:AF∥平面PEC;(2)求证:平面PEC⊥平面PCD;(3)设AD=2,CD=2,求点A到平面PEC的距离.
如图所示,已知四棱锥 P - A B C D ,底面 A B C D 为菱形, P A ⊥ 平面 A B C D , ∠ A B C = 60 ° , E , F 分别是 B C , P C 的中点.
(1)证明: A E ⊥ P D ; (2)若 H 为 P D 上的动点, E H 与平面 P A D 所成最大角的正切值为 6 2 , 求二面角 E - A F - C 的余弦值.
如图所示,在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.(1)若D是BC的中点.求证:AD⊥CC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证:截面MBC1⊥侧面BB1C1C.