如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(,2),B(,4),C(0,2). (1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;(2)平移△ABC,若A的对应点A2的坐标为(,),画出平移后的△A2B2C2;(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.
解方程:
解方程(1);(2)。
如图,在△ABC中,BC=6cm,CA=8cm,∠C=90°,⊙O是△ABC的内切圆,点P从点B开始沿BC边向C以1cm/s的速度移动,点Q从C点开始沿CA边向点A以2cm/s的速度移动。(1)求⊙O的半径; (2)若P、Q分别从B、C同时出发,当Q移动到A时,P点与⊙O是什么位置关系?(3)若P、Q分别从B、C同时出发,当Q移动到A时,移动停止,则经过几秒,△PCQ的面积等于5cm2?
如图,AB是⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D。(1)求证:AC平分∠DAB; (2)连接BC,证明∠ACD=∠ABC;(3)若AB=12cm,∠ABC=60°,求CD的长。
如图,利用一面墙(长度不限),用24m长的篱笆,怎样围成一个面积为70m2的长方形场地?能围成一个面积为80m2的长方形场地吗?为什么?