为了了解某地初中三年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数分布直方图,请结合图形解答下列问题:(1)指出这个问题中的总体;(2)求竞赛成绩在84.5﹣89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可以获得奖励,请估计该地初三年级约有多少人获得奖励.
如图所示,直线与分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数关系图像,假设两种灯的使用寿命都是2000h,照明效果一样. (1)根据图像分别求出L1,L2的函数关系式. (2)当照明时间为多少时,两种灯的费用相等? (3)小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.
(1)在图1中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:① DC =" BC;" ②AD+AB=AC.请你证明结论②; (2)在图2中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
八年级(1)班班委发起慰问烈属王大妈的活动,决定全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.2元买进鲜花,并按每支3元卖出. (1)求同学们卖出鲜花的销售额(元)与销售量(支)之间的函数关系式; (2)若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金(元)与销售量(支)之间的函数关系式;若要筹集500元的慰问金,则要卖出鲜花多少支?(慰问金=销售额-成本)
一次函数y=kx+4的图象经过点(-3,-2),则 (1)求这个函数表达式; (2)判断(-5,3)是否在此函数的图象上;
如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O. (1)求证:AB=DC; (2)试判断△OEF的形状,并说明理由.