为了了解某地初中三年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数分布直方图,请结合图形解答下列问题:(1)指出这个问题中的总体;(2)求竞赛成绩在84.5﹣89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可以获得奖励,请估计该地初三年级约有多少人获得奖励.
某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?
先化简,再求值:,再任选一个你喜欢的数代入求值.
解不等式组把解集在数轴上表示出来,并写出解集中的整数解.
已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”. (1)①如图2,求出抛物线的“完美三角形”斜边AB的长; ②抛物线与的“完美三角形”的斜边长的数量关系是; (2)若抛物线的“完美三角形”的斜边长为4,求a的值; (3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值.
如图,△ABC中,AB=AC,点P是三角形右外一点,且∠APB=∠ABC. (1)如图1,若∠BAC=60°,点P恰巧在∠ABC的平分线上,PA=2,求PB的长; (2)如图2,若∠BAC=60°,探究PA,PB,PC的数量关系,并证明; (3)如图3,若∠BAC=120°,请直接写出PA,PB,PC的数量关系.