家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?
如图,在平面直角坐标系 xOy 中,抛物线 y = - 1 4 x 2 + 3 2 x + 4 与两坐标轴分别相交于 A , B , C 三点.
(1)求证: ∠ ACB = 90 ∘ ;
(2)点 D 是第一象限内该抛物线上的动点,过点 D 作 x 轴的垂线交 BC 于点 E ,交 x 轴于点 F .
①求 DE + BF 的最大值;
②点 G 是 AC 的中点,若以点 C , D , E 为顶点的三角形与 △ AOG 相似,求点 D 的坐标.
如图,在四边形 ABCD 中, AD / / BC , ∠ ABC = 90 ∘ , AD = CD , O 是对角线 AC 的中点,连接 BO 并延长交边 CD 于点 E .
(1)当点 E 在 CD 上,①求证: △ DAC ∼ △ OBC ;②若 BE ⊥ CD ,求 AD : BC 的值;
(2)若 DE = 2 , OE = 3 ,求 CD 的长.
如图,已知圆内接四边形 ABCD 的对角线 AC , BD 交于点 N ,点 M 在对角线 BD 上,且满足 ∠ BAM = ∠ DAN , ∠ BCM = ∠ DCN .求证:
(1) M 为 BD 的中点;
(2) AN CN = AM CM .
如图, △ ABC 是钝角三角形, ∠ A > 90 ∘ , ⊙ O 是 △ ABC 的外接圆,直径 PQ 恰好经过 AB 的中点 M , PQ 与 BC 的交点为 D , ∠ CDO = 45 ∘ , l 为过点 C 圆的切线,作 DE ⊥ l , CF 也为圆的直径.
(1)求证: △ CFB ∼ △ DCE ;
(2)已知 ⊙ O 的半径为 3 ,求 A D 2 + C D 2 的值.
如图所示, AB 是 ⊙ O 的一条弦, P 是 ⊙ O 外一点, PB 切 ⊙ O 于点 B , PA 交 ⊙ O 于点 C ,且 AC = BC , PD ⊥ AB 于点 D , E 是 AB 的中点,求证: PB = 2 DE .