已知某圆的极坐标方程是,求:(1)求圆的普通方程和一个参数方程;(2)圆上所有点中的最大值和最小值.
已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC、AD的中点. (1)求证:DE∥平面PFB; (2)已知二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积.
已知函数,曲线在点处的切线为,若时,有极值. (1)求的值; (2)求在上的最大值和最小值.
已知正方体ABCD-A1B1C1D1, O是底面ABCD对角线的交点. (1)求证:A1C⊥平面AB1D1; (2)求.
已知函数在与时都取得极值. (1)求的值及函数的单调区间; (2)若对,不等式恒成立,求的取值范围.
如图,直线与抛物线交于两点,与轴相交于点,且. (1)求证:点的坐标为; (2)求证:; (3)求的面积的最小值.