已知关于的函数,其导函数为.记函数 在区间上的最大值为.(1) 如果函数在处有极值,试确定的值;(2) 若,证明对任意的,都有;(3) 若对任意的恒成立,试求的最大值.
(1)已知当时,不等式恒成立,求实数的取值范围 (2)解关于的不等式.
如图所示,要用栏杆围成一个面积为50平方米的长方形花园,其中有一面靠墙不需要栏杆,其中正面栏杆造价每米200元,两个侧面栏杆每米造价50元,设正面栏杆长度为米. (1)将总造价y表示为关于的函数; (2)问花园如何设计,总造价最少?并求最小值.
已知等差数列的第二项为8,前10项和为185。 (1)求数列的通项公式; (2)若从数列中,依次取出第2项,第4项,第8项,……,第项,……按原来顺序组成一个新数列,试求数列的通项公式和前n项的和
已知△ABC中,各点的坐标分别为,求: (1)BC边上的中线AD的长度和方程; (2)△ABC的面积.
已知对一切恒成立,求实数的取值范围.