对于三次函数。定义:(1)设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”;定义:(2)设为常数,若定义在上的函数对于定义域内的一切实数,都有成立,则函数的图象关于点对称。己知,请回答下列问题:(1)求函数的“拐点”的坐标(2)检验函数的图象是否关于“拐点”对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)(3)写出一个三次函数,使得它的“拐点”是(不要过程)
在平行四边形中,,点是线段的中点,线段与交于点, (1)求直线的方程 (2)求点的坐标.
已知圆的圆心在轴的正半轴上,半径为,圆被直线截得的弦长为. (1)求圆的方程; (2)设直线与圆相交于两点,求实数的取值范围; (3)在(2)的条件下,是否存在实数,使得关于过点的直线对称? 若存在,求出实数的值;若不存在,请说明理由.
在平行四边形中,,点是线段的中点, 线段与交于点, (1)求直线的方程 (2)求点的坐标.
(本小题满分14分)如图,在四棱锥中,面,四边形是正方形,是的中点,是的中点 (1)求证:面; (2)求证:面.
(本小题满分14分)已知圆的方程是, 且圆的切线满足下列条件,求圆切线方程:(1)过圆外一点 (2)过圆上一点