对于三次函数。定义:(1)设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”;定义:(2)设为常数,若定义在上的函数对于定义域内的一切实数,都有成立,则函数的图象关于点对称。己知,请回答下列问题:(1)求函数的“拐点”的坐标(2)检验函数的图象是否关于“拐点”对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)(3)写出一个三次函数,使得它的“拐点”是(不要过程)
(本小题满分12分)已知. (Ⅰ)求的最小正周期; (Ⅱ)求的单调增区间; (Ⅲ)若[,]时,求的值域.
(本小题满分12分)在直角坐标系中,已知圆的方程:,点是直线:上的任意点,过作圆的两条切线,切点为、,当取最大值时. (1)求点的坐标及过点的切线方程; (2)在的外接圆上是否存在这样的点,使(为坐标原点),如果存在,求出点的坐标,如果不存在,请说明理由.
(本小题满分12分)已知等差数列的前项和为,且.递增的等比数列满足:. (1)求数列的通项公式; (2)若,求数列的前项和.
(本小题满分12分)已知向量,,设函数. (1)求函数的最小正周期和单调递增区间; (2)当时,求函数的值域.
(本小题满分12分)在中,角所对的边分别为,且满足,. (1)求的面积; (2)若,求的值.