对于三次函数。定义:(1)设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”;定义:(2)设为常数,若定义在上的函数对于定义域内的一切实数,都有成立,则函数的图象关于点对称。己知,请回答下列问题:(1)求函数的“拐点”的坐标(2)检验函数的图象是否关于“拐点”对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)(3)写出一个三次函数,使得它的“拐点”是(不要过程)
设n和m是两个单位向量,其夹角是60°,求向量a=2m+n与b=2n-3m的夹角.
已知a=,且∈. (1)求的最值; (2)若|ka+b|=|a-kb| (k∈R),求k的取值范围.
已知平面上三个向量a、b、c的模均为1,它们相互之间的夹角均为120°. (1)求证:(a-b)⊥c; (2)若|ka+b+c|>1 (k∈R),求k的取值范围.
设a=(cos,sin),b=(cos,sin),且a与b具有关系|ka+b|=|a-kb|(k>0). (1)用k表示a·b; (2)求a·b的最小值,并求此时a与b的夹角.
向量a=(cos23°,cos67°),向量b=(cos68°,cos22°). (1)求a·b; (2)若向量b与向量m共线,u=a+m,求u的模的最小值.