在中,所对的边分别为,且,.(1)求的值;(2)求的值.
(本小题满分14分)如图所示,在四棱锥中,平面,,,,是的中点.(1)证明:平面;(2)若,,,求二面角的正切值.
(本小题满分12分)已知数列{an}的前n项和,,且Sn的最大值为8.(1)确定常数k的值,并求通项公式an;(2)求数列的前n项和Tn。
(本小题满分12分)函数()的最大值为1,对任意,有。(1)求函数的解析式;(2)若,其中,求的值。
(本题满分14分)设(为实常数).(1)当时,证明:不是奇函数;(2)设是奇函数,求与的值;(3)当是奇函数时,证明对任何实数、c都有成立
(本题满分12分)若定义在上的函数同时满足下列三个条件:①对任意实数均有成立;②; ③当时,都有成立。(1)求,的值;(2)求证:为上的增函数(3)求解关于的不等式.