已知函数f(x)=x3+x2+ax+b,g(x)=x3+x2+ 1nx+b,(a,b为常数).(1)若g(x)在x=l处的切线方程为y=kx-5(k为常数),求b的值;(2)设函数f(x)的导函数为f’(x),若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围;(3)令F(x)=f(x)-g(x),若函数F(x)存在极值,且所有极值之和大于5+1n2,求a的取值范围.
下图是某地区2000年至2016年环境基础设施投资额 y (单位:亿元)的折线图.
为了预测该地区2018年的环境基础设施投资额,建立了 y 与时间变量 t 的两个线性回归模型.根据2000年至2016年的数据(时间变量 t 的值依次为 α + π 3 = π 2 , 即 α = π 6 )建立模型①: y ̂ = - 30 . 4 + 13 . 5 t ;根据2010年至2016年的数据(时间变量 t 的值依次为 x ≥ 2 x - 2 + 2 x - 2 > 2 )建立模型②: y ̂ = 99 + 17 . 5 t .
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
记 S n 为等差数列 { a n } 的前 n 项和,已知,.
(1)求 { a n } 的通项公式;
(2)求 S n ,并求 S n 的最小值.
设函数 f x = 2 x + 1 + x - 1 .
(1)画出 的图像;
(2)当 x ∈ [ 0 , + ∞ ) , f x ≤ ax + b ,求 a + b 的最小值.
在平面直角坐标系 xOy 中, ⊙ O 的参数方程为 x = cos θ , y = sin θ ( θ 为参数),过点 0 , - 2 且倾斜角为 α 的直线 l 与 ⊙ O 交于 A , B 两点.
(1)求 α 的取值范围;
(2)求 AB 中点 P 的轨迹的参数方程.
已知函数 f x = a x 2 + x - 1 e x .
(1)求曲线在点 0 , - 1 处的切线方程;
(2)证明:当 a ≥ 1 时, f x + e ≥ 0 .