已知和为方程的两根,求(1);(2)的值。
已知函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)当时,在曲线上是否存在两点,使得曲线在两点处的切线均与直线交于同一点?若存在,求出交点纵坐标的取值范围;若不存在,请说明理由;(Ⅲ)若在区间存在最大值,试构造一个函数,使得同时满足以下三个条件:①定义域,且;②当时,;③在中使取得最大值时的值,从小到大组成等差数列.(只要写出函数即可)
某企业有两个生产车间,分别位于边长是的等边三角形的顶点处(如图),现要在边上的点建一仓库,某工人每天用叉车将生产原料从仓库运往车间,同时将成品运回仓库.已知叉车每天要往返车间5次,往返车间20次,设叉车每天往返的总路程为.(注:往返一次即先从仓库到车间再由车间返回仓库)(Ⅰ)按下列要求确定函数关系式:①设长为,将表示成的函数关系式;②设,将表示成的函数关系式.(Ⅱ)请你选用(Ⅰ)中一个合适的函数关系式,求总路程 的最小值,并指出点的位置.
今年我国部分省市出现了人感染H7N9禽流感确诊病例,各地家禽市场受其影响生意冷清.A市虽未发现H7N9疑似病例,但经抽样有20%的市民表示还会购买本地家禽.现将频率视为概率,解决下列问题:(Ⅰ)从该市市民中随机抽取3位,求至少有一位市民还会购买本地家禽的概率;(Ⅱ)从该市市民中随机抽取位,若连续抽取到两位愿意购买本地家禽的市民,或抽取的人数达到4位,则停止抽取,求的分布列及数学期望.
如图,在几何体中,平面,,是等腰直角三角形,,且,点是的中点.(Ⅰ)求证:平面;(Ⅱ)求与平面所成角的正弦值.
已知,关于的不等式的解集不是空集,求实数的取值范围.