已知两点及,点在以、为焦点的椭圆上,且、、构成等差数列.(1)求椭圆的方程;(2)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且,. 求四边形面积的最大值.
.已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点。(Ⅰ)求双曲线C2的方程;(Ⅱ)若直线与椭圆C1及双曲线C2都恒有两个不同的交点,且l与C2的两个交点A和B满足(其中O为原点),求k的取值范围。
. 设函数是定义在上的增函数,若不等式对于任意恒成立,求实数的取值范围。
已知:双曲线的左、右两个焦点分别为、,动点满足。()求:动点的轨迹的方程; ()若、分别为(1)中曲线的左、右焦点,是曲线上的一个动点,求:的最大值和最小值。
有一枚正方体骰子,六个面分别写1、2、3、4、5、6的数字,规定“抛掷该枚骰子得到的数字是抛掷后,面向上的那一个数字”。已知b和c是先后抛掷该枚骰子得到的数字,函数=。(Ⅰ)若先抛掷骰子得到的数字是3,求再次抛掷骰子时,使函数有零点的概率;(Ⅱ) 求函数在区间(—3,+∞)是增函数的概率
在边长为2的正方体中,E是BC的中点,F是的中点(Ⅰ)求证:CF∥平面(Ⅱ)求二面角的平面角的余弦值。