分解因式:ax2-2ax+a= .
古希腊著名的毕达哥拉斯学派把1,3,6,10 ,…这样的数称为“三角形数”(如图①),而把1,4,9,16,…这样的数称为“正方形数”(如图②).如果规定,,,,…;,,,,…;,,,,…,那么,按此规定, ,= (用含n的式子表示,n为正整数).
如图,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以点A为圆心在这个梯形内画出一个最大的扇形(图中阴影部分),则这个扇形的面积是
如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若该圆的半径为1,扇形的圆心角等于60°,则这个扇形的半径R的值是 .
如图,△ABC为等边三角形,D是△ABC内一点,且AD=3,将△ABD绕点A旋转到△ACE的位置,连接DE,则DE的长为 .
如图,点A1,A2,A3,…,点B1,B2,B3,…,分别在射线OM,ON上.OA1=1,A1B1=2O A1,A1 A2=2O A1,A2A3=3OA1,A3 A 4=4OA1,….A1B1∥A2B2∥A3B3∥A4B4∥….则A2B2= ,AnBn= (n为正整数).