已知曲线E上任意一点P到两个定点F1(-,0)和F2(,0)的距离之和为4.(1)求曲线E的方程;(2)设过点(0,-2)的直线l与曲线E交于C、D两点,且·=0(O为坐标原点),求直线l的方程.
已知函数,函数是函数的反函数.(1)求函数的解析式,并写出定义域;(2)设,若函数在区间内的图像是不间断的光滑曲线,求证:函数在区间内必有唯一的零点(假设为),且.
已知函数.(1)求函数的单调递增区间;(2)在中,内角所对边的长分别是,若,求的面积的值.
在长方体中,,分别是所在棱的中点,点是棱上的动点,联结.如图所示.(1)求异面直线所成角的大小(用反三角函数值表示);(2)求以为顶点的三棱锥的体积.
设满足约束条件若目标函数的最大值为10,则的最小值为
抛物线处的切线与抛物线以及轴所围成的曲边图形的面积为