已知椭圆C:x2a2+y2b2=1a>b>0的一个焦点为5,0,离心率为53. (1)求椭圆C的标准方程; (2)若动点Px0,y0为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.
已知抛物线,为抛物线的焦点,椭圆; (1)若是与在第一象限的交点,且,求实数的值; (2)设直线与抛物线交于两个不同的点,与椭圆交于两个 不同点,中点为,中点为,若在以为直径的圆上,且,求实数 的取值范围.
如图,设抛物线()的准线与轴交于,焦点为;以、为焦点,离心率的椭圆与抛物线在轴上方的一个交点为. (1)当时,求椭圆的方程; (2)在(1)的条件下,直线经过椭圆的右焦点,与抛物线交于、,如果以线段为直径作圆,试判断点与圆的位置关系,并说明理由; (3)是否存在实数,使得的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由.
已知函数. (1)求函数在区间上的最大、最小值; (2)求证:在区间上,函数的图象在函数的图象的下方.
(1)已知,,求证:; (2)已知正数满足关系,求证:.
一车间生产A, B, C三种样式的LED节能灯,每种样式均有10W和30W两种型号,某天的产量如右表(单位:个)。按样式分层抽样的方法在这个月生产的灯泡中抽取100个,其中有A样式灯泡25个.
(1)求z的值; (2)用分层抽样的方法在A样式灯泡中抽取一个容量为5的样本,从这个样本中任取2个灯泡,求至少有1个10W的概率.