已知椭圆C:x2a2+y2b2=1a>b>0的一个焦点为5,0,离心率为53. (1)求椭圆C的标准方程; (2)若动点Px0,y0为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.
如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.(Ⅰ)求证:BD⊥平面POA;(Ⅱ)记三棱锥P- ABD体积为V1,四棱锥P—BDEF体积为V2.求当PB取得最小值时的V1:V2值.
在直角坐标系xOy中,已知椭圆C:(a >0)与x轴的正半轴交于点P.点Q的坐标为(3,3),=6.(Ⅰ)求椭圆C的方程;(Ⅱ)过点Q且斜率为的直线交椭圆C于A、B两点,求△AOB的面积
已知函数f(x)=.(Ⅰ)求函数f()的值;(Ⅱ)求函数f(x)的单调递减区间.
某教室有4扇编号为a、,b、c、d的窗户和2扇编号为x、y的门,窗户d敞开,其余门和窗户均被关闭.为保持教室空气流通,班长在这些关闭的门和窗户中随机地敞开2扇.(Ⅰ)记“班长在这些关闭的门和窗户中随机地敞开2扇”为事件A,请列出A包含的基本事件;(Ⅱ)求至少有1扇门被班长敞开的概率.
在数列{an}中,a1=,点(an,an+1)(n∈N*)在直线y=x+上(Ⅰ)求数列{an}的通项公式;(Ⅱ)记bn=,求数列{bn}的前n项和Tn.