已知双曲线E:x2a2-y2b2=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=-2x. (1)求双曲线E的离心率; (2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一,四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程;若不存在,说明理由.
已知函数,记函数的最小正周期为,向量,(),且. (Ⅰ)求在区间上的最值; (Ⅱ)求的值.
已知函数. (Ⅰ)若,使得不等式成立,求的取值范围; (Ⅱ)求使得等式成立的的取值范围.
已知曲线的极坐标方程为,曲线的极坐标方程为,曲线、相交于、两点.() (Ⅰ)求、两点的极坐标; (Ⅱ)曲线与直线(为参数)分别相交于两点,求线段的长度.
如图,已知圆与圆外切于点,直线是两圆的外公切线,分别与两圆相切于两点,是圆的直径,过作圆的切线,切点为. (Ⅰ)求证:三点共线; (Ⅱ)求证:.