某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (1)求选出的3名同学是来自互不相同学院的概率; (2)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.
已知圆C:内有一点P(2,2),过点P作直线交圆C于A、B两点。(1)当经过圆心C时,求直线的方程;(2)当弦AB的长为时,写出直线的方程。
已知函数.(1)求曲线在点处的切线方程;(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.
已知:以点C (t, )(t∈R , t ≠ 0)为圆心的圆与轴交于点O, A,与y轴交于点O, B,其中O为原点.(1)求证:△OAB的面积为定值;(2)设直线y = –2x+4与圆C交于点M, N,若|OM| = |ON|,求圆C的方程.
设 (1)求不等式的解集;(2)若不等式的解集是非空集合,求实数m的取值范围.
已知曲线直线将直线的极坐标方程和曲线的参数方程分别化为直角坐标方程和普通方程;设点P在曲线C上,求点P到直线的距离的最小值。