某实验室一天的温度(单位: ° C )随时间 t (单位: h )的变化近似满足函数关系; f ( t ) = 10 - 3 cos π 12 t - sin π 12 t , t ∈ [ 0 , 24 ] . (1)求实验室这一天的最大温差; (2)若要求实验室温度不高于11 ° C ,则在哪段时间实验室需要降温?
如果点P(sinθ·cosθ,2cosθ)位于第三象限,试判断角θ所在的象限;
已知角α终边上一点P(-,y),且sinα=y,求cosα和tanα的值.
α是第二象限角,P(x,)为其终边上一点,且cosα=x,求sinα的值.
设动点P(x,y)(x≥0)到定点F的距离比到y轴的距离大.记点P的轨迹为曲线C. (1)求点P的轨迹方程; (2)设圆M过A(1,0),且圆心M在P的轨迹上,BD是圆M在y轴上截得的弦,当M运动时弦长BD是否为定值?说明理由; (3)过F作互相垂直的两直线交曲线C于G、H、R、S,求四边形GRHS面积的最小值.
已知E(2,2)是抛物线C:y2=2px上一点,经过点(2,0)的直线l与抛物线C交于A,B两点(不同于点E),直线EA,EB分别交直线x=-2于点M,N. (1)求抛物线方程及其焦点坐标; (2)已知O为原点,求证:∠MON为定值.