已知集合P={x|x2-8x-20≤0},S={x||x-1|≤m}.(1)若(P∪S)⊆P,求实数m的取值范围;(2)是否存在实数m,使得“x∈P”是“x∈S”的充要条件?若存在,求出m的取值范围;若不存在,请说明理由.
(本题14分)已知P(2,1),直线l:x-y+4=0. (1)求过点P与直线l平行的直线方程; (2) 求过点P与直线l垂直的直线方程.
(本大题14分)如图,在棱长为a的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点. (1)求证:B1D1∥面EFG (2)求证:平面AA1C⊥面EFG.
(本题16分)已知{an}是等差数列,且a1=2,a1+a2+a3=12. (1)求数列{an}的通项公式; (2)令bn= an3n,求{bn}的前n项的和Tn.
(本小题满分12分)如图所示,四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动. (1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由; (2)求证:无论点E在BC边的何处,都有PE⊥AF; (3)当BE为何值时,PA与平面PDE所成角的大小为45°.
、(本小题满分12分)某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和. (1)若某位顾客消费128元,求返券金额不低于30元的概率; (2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元).求随机变量的分布列和数学期望.