已知射线l1:y=4x(x≥0)和点P(6,4),试在l1上求一点Q使得PQ所在直线l和l1以及直线y=0在第一象限围成的面积达到最小值,并写出此时直线l的方程.
求同时满足下列两个条件的所有复数. (1)是实数,且; (2)的实部和虚部都是整数.
已知,且为纯虚数,求的最大值及当取最大值时的.
在复平面上,正方形的两个顶点对应的复数分别为、.求另外两个顶点对应的复数.
实数取何值时,复数 (1)是实数; (2)是纯虚数; (3)对应的点位于复平面的第一象限.
已知关于的方程有实数根. (1)求实数,的值; (2)若复数满足,求为何值时,有最小值并求出最小值.