在复平面上,设点A、B、C ,对应的复数分别为。过A、B、C 做平行四边形ABCD。 求点D的坐标及此平行四边形的对角线BD的长。
(本小题满分12分)济南高新区引进一高科技企业,投入资金720万元建设基本设施,第一年各种运营费用120万元,以后每年增加40万元;每年企业销售收入500万元,设表示前年的纯收入.(=前年的总收入-前年的总支出-投资额) (Ⅰ)从第几年开始获取纯利润? (Ⅱ)若干年后,该企业为开发新产品,有两种处理方案: ①年平均利润最大时,以480万元出售该企业; ②纯利润最大时,以160万元出售该企业; 问哪种方案最合算?
(本小题满分12分)已知定义在实数集上的奇函数有最小正周期2,且当时, (Ⅰ)求函数在上的解析式;(Ⅱ)判断在上的单调性; (Ⅲ)当取何值时,方程在上有实数解?
(本小题满分8分)已知平面向量a,b (Ⅰ)若存在实数,满足xab,yab且x⊥y,求出关于的关系式; (Ⅱ)根据(Ⅰ)的结论,试求出函数在上的最小值.
(本小题满分8分)设函数的图象在处的切线方程为. (Ⅰ)求,; (Ⅱ)若函数在处取得极值,试求函数解析式并确定函数的单调区间.
(本小题满分8分) 已知是一个公差大于0的等差数列,且满足. (Ⅰ)求数列的通项公式: (Ⅱ)等比数列满足:,若数列,求数列的前n项和.