为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)样本中,男生的身高中位数在 组;(2)样本中,女生身高在E组的人数有 人;(3)已知该校共有男生800人,女生760人,请估计身高在之间的学生约有多少人?
在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.
(1)用树状图或列表法求出小王去的概率;
(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.
抛物线 y = − x 2 + 2 x + 3 与 x 轴交于点 A , B ( A 在 B 的左侧),与 y 轴交于点 C .
(1)求直线 BC 的解析式;
(2)抛物线的对称轴上存在点 P ,使 ∠ APB = ∠ ABC ,利用图1求点 P 的坐标;
(3)点 Q 在 y 轴右侧的抛物线上,利用图2比较 ∠ OCQ 与 ∠ OCA 的大小,并说明理由.
如图, AB 为 ⊙ O 的直径, CB , CD 分别切 ⊙ O 于点 B , D , CD 交 BA 的延长线于点 E , CO 的延长线交 ⊙ O 于点 G , EF ⊥ OG 于点 F .
(1)求证: ∠ FEB = ∠ ECF ;
(2)若 BC = 6 , DE = 4 ,求 EF 的长.
某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.
(1)排球和足球的单价各是多少元?
(2)若恰好用去1200元,有哪几种购买方案?
九 (1)班48名学生参加学校举行的“珍惜生命,远离毒品”知识竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:60,90,63,99,67,99,99,68.
频数分布表
分数段
频数(人数)
60 ⩽ x < 70
a
70 ⩽ x < 80
16
80 ⩽ x < 90
24
90 ⩽ x < 100
b
请解答下列问题:
(1)完成频数分布表, a = , b = .
(2)补全频数分布直方图;
(3)全校共有600名学生参加初赛,估计该校成绩 90 ⩽ x < 100 范围内的学生有多少人?
(4)九 (1)班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲、乙两位同学的概率.