甲、 乙两个袋中均装有三张除标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3,乙袋中的三张卡片所标的数值为-2,1,6,先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值.把x、y分别作为点A的横坐标和纵坐标.(1)用列表或画树形图的方法写出点A(x,y)的所有情况;(2)求点A落在直线y=2x上的概率.
如图,在 ΔABC 中, ∠ C = 90 ° , ∠ BAC 的平分线交 BC 于点 D ,点 O 在 AB 上,以点 O 为圆心, OA 为半径的圆恰好经过点 D ,分别交 AC , AB 于点 E , F .
(1)试判断直线 BC 与 ⊙ O 的位置关系,并说明理由;
(2)若 BD = 2 3 , BF = 2 ,求阴影部分的面积(结果保留 π ) .
如图,在平面直角坐标系中,已知 ΔABC 三个顶点的坐标分别是 A ( 2 , 2 ) , B ( 4 , 0 ) , C ( 4 , − 4 ) .
(1)请在图中,画出 ΔABC 向左平移6个单位长度后得到的△ A 1 B 1 C 1 ;
(2)以点 O 为位似中心,将 ΔABC 缩小为原来的 1 2 ,得到△ A 2 B 2 C 2 ,请在图中 y 轴右侧,画出△ A 2 B 2 C 2 ,并求出 ∠ A 2 C 2 B 2 的正弦值.
为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有 人,在扇形统计图中, m 的值是 ;
(2)将条形统计图补充完整;
(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.
如图1,抛物线 y = a x 2 + bx + 2 与 x 轴交于 A , B 两点,与 y 轴交于点 C , AB = 4 ,矩形 OBDC 的边 CD = 1 ,延长 DC 交抛物线于点 E .
(1)求抛物线的解析式;
(2)如图2,点 P 是直线 EO 上方抛物线上的一个动点,过点 P 作 y 轴的平行线交直线 EO 于点 G ,作 PH ⊥ EO ,垂足为 H .设 PH 的长为 l ,点 P 的横坐标为 m ,求 l 与 m 的函数关系式(不必写出 m 的取值范围),并求出 l 的最大值;
(3)如果点 N 是抛物线对称轴上的一点,抛物线上是否存在点 M ,使得以 M , A , C , N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点 M 的坐标;若不存在,请说明理由.
如图,菱形 ABCD 中,对角线 AC , BD 相交于点 O , AC = 12 cm , BD = 16 cm ,动点 N 从点 D 出发,沿线段 DB 以 2 cm / s 的速度向点 B 运动,同时动点 M 从点 B 出发,沿线段 BA 以 1 cm / s 的速度向点 A 运动,当其中一个动点停止运动时另一个动点也随之停止.设运动时间为 t ( s ) ( t > 0 ) ,以点 M 为圆心, MB 长为半径的 ⊙ M 与射线 BA ,线段 BD 分别交于点 E , F ,连接 EN .
(1)求 BF 的长(用含有 t 的代数式表示),并求出 t 的取值范围;
(2)当 t 为何值时,线段 EN 与 ⊙ M 相切?
(3)若 ⊙ M 与线段 EN 只有一个公共点,求 t 的取值范围.