甲、 乙两个袋中均装有三张除标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3,乙袋中的三张卡片所标的数值为-2,1,6,先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值.把x、y分别作为点A的横坐标和纵坐标.(1)用列表或画树形图的方法写出点A(x,y)的所有情况;(2)求点A落在直线y=2x上的概率.
如图,AB是⊙O的直径,点F,C是⊙O上两点,且,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D. (1)求证:CD是⊙O的切线; (2)若CD=,求⊙O的半径.
如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD. (1)求证:BD=CD; (2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.
四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF. (1)试判断△AEF的形状,并说明理由; (2)填空:△ABF可以由△ADE绕旋转中心 点,按顺时针方向旋转 度得到; (3)若BC=8,则四边形AECF的面积为 .(直接写结果)
如图,抛物线的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点. (1)求点A,B,C的坐标; (2)点M为线段AB上一点(点M不与点A,B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积; (3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=DQ,求点F的坐标.
已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D. (1)如图①,当直线l与⊙O 相切于点C时,若∠DAC=30°,求∠BAC的大小; (2)如图②,当直线l与⊙O 相交于点E、F时,若∠DAE=18°,求∠BAF的大小.