某企业生产A,B两种产品,生产每吨产品所需的劳动力和煤、电耗如下表:已知生产每吨A产品的利润是5万元,生产每吨B产品的利润是10万元,现因条件限制,该企业仅有劳动力300个,煤360 t,并且供电局只能供电200 kW,试问该企业生产A,B两种产品各多少吨,才能获得最大利润?
已知函数,其中. (Ⅰ)若,求曲线在点处的切线方程; (Ⅱ)求在区间上的最大值和最小值.
如图,椭圆的左顶点为,是椭圆上异于点的任意一点,点与点关于点对称. (Ⅰ)若点的坐标为,求的值; (Ⅱ)若椭圆上存在点,使得,求的取值范围.
如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示. (Ⅰ)证明:平面; (Ⅱ)证明:∥平面; (Ⅲ)线段上是否存在点,使与所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.
某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励. (Ⅰ)求1名顾客摸球3次停止摸奖的概率; (Ⅱ)记为1名顾客摸奖获得的奖金数额,求随机变量的分布列和数学期望.
如图,在直角坐标系中,角的顶点是原点,始边与轴正半轴重合,终边交单位圆于点,且.将角的终边按逆时针方向旋转,交单位圆于点.记. (Ⅰ)若,求; (Ⅱ)分别过作轴的垂线,垂足依次为.记△的面积为,△的面积为.若,求角的值.