如图,已知四棱锥P—ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD的中点.(1)证明:PE⊥BC;(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.
已知奇函数(1)求实数的值,并在给出的直角坐标系中画出的图象;(2)若函数在区间上单调递增,试确定实数的取值范围.
设集合,且.⑴求的值;⑵判断函数在的单调性,并用定义加以证明.
已知集合(),.(1)当时,求;(2)若,求实数的取值范围.
已知函数,,其中且.(Ⅰ)当,求函数的单调递增区间;(Ⅱ)若时,函数有极值,求函数图象的对称中心的坐标;(Ⅲ)设函数 (是自然对数的底数),是否存在a使在上为减函数,若存在,求实数a的范围;若不存在,请说明理由.
设平面向量,,已知函数在上的最大值为6.(Ⅰ)求实数的值;(Ⅱ)若,.求的值.