如图,已知四棱锥P—ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD的中点.(1)证明:PE⊥BC;(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.
(本小题满分14分) 已知函数,其中实数是常数. (1)已知,,求事件A“”发生的概率; (2)若是上的奇函数,是在区间上的最小值,求当时的解析式.
(本小题满分12分) 如图,在四棱锥中,,,,平面平面,是线段上一点,,,. (1)证明:平面; (2)设三棱锥与四棱锥的体积分别为与,求的值.
(本小题满分14分) 已知向量与向量垂直,其中为第二象限角. (1)求的值; (2)在中,分别为所对的边,若,求的值.
((本小题满分13分) 已知椭圆,以原点为圆心,椭圆的短半轴为半径的圆与直线相切。 (1)求椭圆C的方程; (2)设轴对称的任意两个不同的点,连结交椭圆 于另一点,证明:直线与x轴相交于定点; (3)在(2)的条件下,过点的直线与椭圆交于、两点,求的取值 范围。
((本小题满分13分) 设数列为等差数列,且a5=14,a7=20。 (I)求数列的通项公式; (II)若