已知函数 的部分图象,如图所示.(1)求函数解析式;(2)若方程在有两个不同的实根,求的取值范围.
设函数,其中. (Ⅰ)当时,求曲线在原点处的切线方程; (Ⅱ)试讨论函数极值点的个数; (Ⅲ)求证:对任意的,不等式恒成立.
已知椭圆:的离心率为,右顶点是抛物线的焦点.直线:与椭圆相交于,两点. (Ⅰ)求椭圆的方程; (Ⅱ)如果,点关于直线的对称点在轴上,求的值.
在如图所示的几何体中,四边形ABCD为矩形,平面ABEF平面ABCD,EF//AB,,AD=2,AB= AF=2EF=l,点P在棱DF上. (1)若P为DF的中点,求证:BF//平面ACP (2)若二面角D-AP-C的余弦值为,求PF的长度.
以下茎叶图记录了甲、乙两名射击运动员训练的成绩(环数),射击次数为4次. (1)试比较甲、乙两名运动员射击水平的稳定性; (2)每次都从甲、乙两组数据中随机各选取一个进行比对分析,共选取了4次(有放回选取).设选取的两个数据中甲的数据大于乙的数据的次数为,求的分布列及数学期望.
已知 ,,记函数 (1)求函数取最大值时的取值集合; (2)设的角所对的边分别为,若a=2csinA,c=,且△ABC的面积为,求a+b的值.